National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Packet Filtration in 100 Gb Networks
Kučera, Jan ; Matoušek, Jiří (referee) ; Kořenek, Jan (advisor)
This master's thesis deals with the design and implementation of an algorithm for high-speed network packet filtering. The main goal was to provide hardware architecture, which would support large rule sets and could be used in 100 Gbps networks. The system has been designed with respect to the implementation on an FPGA card and time-space complexity trade-off. Properties of the system have been evaluated using various available rule sets. Due to the highly optimized and deep pipelined architecture it was possible to reach high working frequency (above 220 MHz) together with considerable memory reduction (on average about 72% for compared algorithms). It is also possible to efficiently store up to five thousands of filtering rules on an FPGA with only 8% of on-chip memory utilization. The architecture allows high-speed network packet filtering at wire-speed of 100 Gbps.
System for Protection against DoS Attacks
Šiška, Pavel ; Wrona, Jan (referee) ; Kučera, Jan (advisor)
This bachelor's thesis deals with the design and implementation of the software part of the system for protection against DoS attacks. Nowadays Denial of Service attacks are quite common and can cause significant financial damage to internet or service providers. The main goal of this thesis was to provide software, which is focused on high-speed data throughput and can provide efficient protection against these attacks in 100 Gbps networks. Key part of the system, which is being developed in cooperation with CESNET, is hardware-accelerated network interface card, which can process incoming network traffic  at full wire-speed and does the operations laid down by the software part. The main task of the software is evaluation of the information about network traffic and managing actions of the hardware accelerator. The software part of the proposed system has been successfully implemented and the properties of the system have been verified in an experimental evaluation. During the work on this thesis the first implementation of the system has already been deployed in CESNET network infrastructure.
System for Protection against DoS Attacks
Šiška, Pavel ; Wrona, Jan (referee) ; Kučera, Jan (advisor)
This bachelor's thesis deals with the design and implementation of the software part of the system for protection against DoS attacks. Nowadays Denial of Service attacks are quite common and can cause significant financial damage to internet or service providers. The main goal of this thesis was to provide software, which is focused on high-speed data throughput and can provide efficient protection against these attacks in 100 Gbps networks. Key part of the system, which is being developed in cooperation with CESNET, is hardware-accelerated network interface card, which can process incoming network traffic  at full wire-speed and does the operations laid down by the software part. The main task of the software is evaluation of the information about network traffic and managing actions of the hardware accelerator. The software part of the proposed system has been successfully implemented and the properties of the system have been verified in an experimental evaluation. During the work on this thesis the first implementation of the system has already been deployed in CESNET network infrastructure.
Packet Filtration in 100 Gb Networks
Kučera, Jan ; Matoušek, Jiří (referee) ; Kořenek, Jan (advisor)
This master's thesis deals with the design and implementation of an algorithm for high-speed network packet filtering. The main goal was to provide hardware architecture, which would support large rule sets and could be used in 100 Gbps networks. The system has been designed with respect to the implementation on an FPGA card and time-space complexity trade-off. Properties of the system have been evaluated using various available rule sets. Due to the highly optimized and deep pipelined architecture it was possible to reach high working frequency (above 220 MHz) together with considerable memory reduction (on average about 72% for compared algorithms). It is also possible to efficiently store up to five thousands of filtering rules on an FPGA with only 8% of on-chip memory utilization. The architecture allows high-speed network packet filtering at wire-speed of 100 Gbps.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.